
Certification Support for Automatically
Generated Programs

SOLUTIONPROBLEM
Auto-generated code has many advantages
e.g., less coding effort, more maintainable
But: this technology comes with risk
• Can you trust the code-generator?
• How can the correctness of the generated
code be assessed?
• Code generators are complex pieces of
software themselves that may contain bugs

Product-oriented certification

Don’t try to verify the code-generator!

Rather: automatically verify safety properties
for each generated piece of code, e.g.,

•Array-bound safety,

•Variable initialization safety,

• Division-by-zero, …double data[100]
X~N(mu,sigma)

TECHNOLOGY

AutoBayes
Synthesis System We extended the AutoBayes program synthesis

system to automatically generate annotations for the
selected properties. With a Verification Condition
generator, we then produce logical conditions which
are then automatically proven using an automated
theorem prover. Thus, no user interaction is
necessary. If required, each of the proofs could be
checked (by an independent third party) for
correctness.

Solve(x,y)
{
For(I=0; I<n;I++){
If(a>b){
x[I]=x[I]+10;

OK

ge
ne

ra
te

d
co

de Verification Condition
Generator

Automated
Theorem Prover

Explanation of Accomplishment
• POC: Johann Schumann, (RIACS, ASE, Code IC, schumann@email.arc.nasa.gov)
• Technology:Although autocoding techniques promise large gains in software development

productivity, their ``real-world'' application has been limited, particularly in safety-critical domains.
Often, the major impediment is the missing trustworthiness of these systems: demonstrating---let
alone formally certifying---the trustworthiness of automatic code generators is extremely difficult due
to their complexity and size. We develop an alternative product-oriented certification approach which
is based on five principles: (1) trustworthiness of the generator is reduced to the safety of each
individual generated program; (2) program safety is defined as adherence to an explicitly formulated
safety policy; (3) the safety policy is formalized by a collection of logical program properties; (4)
Hoare-style program verification is used to show that each generated program satisfies the required
properties; (5) the code generator itself is extended to automatically produce the code annotations
required for verification. The approach is feasible because the code generator has full knowledge
about the program under construction and about the properties to be verified. It can thus generate all
auxiliary code annotations that an automated theorem prover needs to discharge all emerging
verification obligations fully automatically.

• Accomplishment: This approach was used in a prototype certification extension for AutoBayes,
an automatic program synthesis system which generates data analysis programs (e.g., for clustering
and time-series analysis) from declarative specifications. In particular, we showed how a variable-
initialization-before-use safety policy could be encoded and certified. The paper about this work
“Certification Support for Automatically Generated Programs" (Johann Schumann, Bernd Fischer,
Mike Whalen (U. Minnesota), and Jon Whittle) was presented by Johann Schumann at the 36th
Hawaii International Conference on System Sciences (HICSS-36, 1/6-1/9, 2003) in the Software
Engineering/Testing and Certification of Trustworthy Systems track. The paper was nominated for
best paper in the Software Technology Track. The paper is available at
http://ase.arc.nasa.gov/schumann/publications/papers/2003/hicss-36.html.

• Benefits: This technology has the potential to increase confidence in the use of code
generators within and outside NASA. Auto-generated code will come with a certificate
of its correctness (with respect to certain key properties that have been proved). These
certificates can be independently checked by third parties such as a certification
authority.

	Explanation of Accomplishment

